viernes, 23 de octubre de 2009

State of the art

The first project is titled “Inquiry Within: Implementing inquiry-based science in the classroom”, by Douglas Llewellyn (2001) and it was carried out at Saucon Valley School in San Diego, California. This project provides clear-cut insights along with practical suggestions on how to develop critical thinking skills and autonomy in fourth grade students by implementing inquiry-based hands-on science activities. His project starts taking the readers through constructing an understanding of inquiry and the characteristics of an inquiry-based classroom; then, it addresses what constitutes an inquiry investigation and the teaching strategies that enhance inquiry-based learning.

This project explores the meaning of inquiry through a constructivist approach that allows students to build scientific knowledge while becoming more autonomous learners. It follows a 4th grade class through a unit of study characterized by student-generated questions. It lays the foundation for autonomous learning strategies and shows how constructivism complements inquiry-based learning. It also compares traditional and inquiry-based classrooms as well as investigations with other hands-on science activities through a grid that divides instructional strategies into demonstrations, activities, teacher-initiated inquiries, and student-initiated inquiries. I found this project helpful because it compares inquiry with the scientific method and scientific problem solving and it introduces The Learning Cycle, a five-step approach to designing lessons that facilitate inquiry and autonomous learning. After that, the project presents a rubric for assessing and monitoring the four stages of development in becoming an inquiry-based teacher and presents questioning strategies that enable inquiry-based learning. Finally, this project presents how a beginning elementary school teacher describes her journey into implementing inquiry-based science activities; she describes her experiences including the joys, the challenges, and the rewards of teaching through inquiry and the impact it has on students’ autonomy awareness.

The second study is titled “The use of inquiry-based education in the science classroom” by Douglas Cuchiarelli (2001) and it was carried out at Gunston elementary school in Arlington, USA. This project starts by comparing two distinct types of assignments that can be handed out in a science class. The first one is the “cookbook” lab or activity in which the students follow procedures and answer questions at the end of the assignment. It makes clear that sometimes those types of assignments are necessary because they facilitate efficient comprehension of information, but points out that the drawback to using “cookbook” lab assignments is that the students are not taking any ownership over what they are learning and this affects their autonomy awareness. Therefore, the information they receive from the activity is not meaningful to them since these assignments do not encourage students’ questions.

Then the projects focuses on inquiry-based education, in which the teacher must make the students feel like scientists completing this experiment for the first time. The teacher must allow them to find problems in their procedures and make necessary corrections. It also stresses that in order for the science assignments to be authentic, the students must feel like they are contributing to the scientific community. Finally, the project presents examples of different inquiry-based hands-on activities that can be included in an inquiry-based science unit to make students more autonomous learners.

I find these two studies particularly useful for my own project because they deal with important aspects related to the increase of the students’ autonomy awareness and the improvement of students’ critical skills, by studying science following an inquiry-based approach that uses inquiry-based hands-on science activities in the science classroom.

No hay comentarios:

Publicar un comentario