Conclusions
My understanding of the impact of inquiry-based learning in students’ autonomy awareness led me to reflect on theoretical ideas, particularly related to teaching science as an inquiry-generating process which is influenced by a wide range of classroom factors. This understanding which proved to be very effective with this group of fourth grade students, also led me to changes in my science teaching approach in terms of methodology, tasks, materials and classroom interactions that other science teachers and I had overlooked because of our tendency to teach in a traditional teacher-driven way.
Regarding some recommendations for those who are interested in doing the second cycle of this study, they deal mainly with the data analysis process since this aspect turned out to be the most difficult one for me to deal with in the completion of my research project as it is the area of action research that is the least well defined making the issue of how action research data should be analyzed a very challenging one for any teacher researcher, including me (Burns, 1999).
First of all, I would recommend any other teacher researcher who decides to work on a similar project not to separate the processes of data collection and data analysis the way I did, because, in my practice, this proved to be difficult and unnecessary. In my case, I began analysis only when I had collected all the data, leaving aside an essential feature of action research which is the flexibility that results from cycling back and forth from data collection to analysis to further data collection and so on (Somekh, 2006).
Another aspect related to data analysis that I would like to recommend to other teacher researchers is to take into account from the beginning, that once there has been some overall examination of the data, it is absolutely important to develop categories or codes to identify the broad trends that have emerged from making some kind of sense of the data collected more specifically (Cohen, 2005). I took too long to start coding or attempting to reduce the large amount of data that I had collected with the data collection instruments I used, such as tests, surveys, portfolios and field notes, to more manageable categories of concepts, themes or types which would have made it easier for me to later compare the data and build interpretations. My recommendation for other researchers is to assemble all the data that can illuminate the research question, skim the data considering any and all categories for sorting, and creating their categories whenever they see repetition or a pattern emerges, giving a name to each category until they complete a list of them.
The idea that data collection, action and analysis are interrelated and recycle into each other when doing action research summarizes my recommendations for those teacher researchers who are willing to carry out the second cycle of this action research project. It is difficult as well as unnecessary to separate the process of data collection and analysis in an action research project like the one I already developed.
Pedagogical implications
The implementation of an inquiry-based learning unit full of inquiry activities related to the systems of the human body will give students the opportunity to ask more questions, to discover scientific knowledge themselves, and to communicate more with other peers and the teacher, thus increasing their autonomy awareness (Sheerin, 1997) as well as developing their thinking skills while learning science in their second language within a student-centered classroom atmosphere.
My intention with this action research project is to contribute to the field of teaching and learning science in English, since this study will shed light about important issues related to how the level of autonomy awareness can be increased in a group of fourth grade students by means of applying an inquiry-based learning approach to science rather than a traditional teacher-centered methodology.
This study is relevant for the students, because it will help them improve in terms of learner autonomy. Learning to be autonomous is one of the most important objectives students must accomplish nowadays because the development of this skill makes them able to make decisions in an independent way after analyzing many possibilities, and because it is very helpful for students to be successful in any project or task they have to face in their daily lives (Luke, 2006).
This action research project is also pertinent for the educational institution for which I work, because it will lead teachers of the science department to reflect on the importance of including inquiry-based science activities in the units of the current science program to help students become more autonomous while developing critical thinking skills.
Students who use inquiry to learn science engage in many of the same activities and thinking processes as scientists who are seeking to expand human knowledge of the natural world. The activities and thinking processes used by scientists will become more familiar to the educators seeking to introduce inquiry into their science classrooms. Both students and teachers will be able to use inquiry to learn how to do science, learn about the nature of science, and learn science content (Olson, 2000).
My understanding of the impact of inquiry-based learning in students’ autonomy awareness led me to reflect on theoretical ideas, particularly related to teaching science as an inquiry-generating process which is influenced by a wide range of classroom factors. This understanding which proved to be very effective with this group of fourth grade students, also led me to changes in my science teaching approach in terms of methodology, tasks, materials and classroom interactions that other science teachers and I had overlooked because of our tendency to teach in a traditional teacher-driven way.
Regarding some recommendations for those who are interested in doing the second cycle of this study, they deal mainly with the data analysis process since this aspect turned out to be the most difficult one for me to deal with in the completion of my research project as it is the area of action research that is the least well defined making the issue of how action research data should be analyzed a very challenging one for any teacher researcher, including me (Burns, 1999).
First of all, I would recommend any other teacher researcher who decides to work on a similar project not to separate the processes of data collection and data analysis the way I did, because, in my practice, this proved to be difficult and unnecessary. In my case, I began analysis only when I had collected all the data, leaving aside an essential feature of action research which is the flexibility that results from cycling back and forth from data collection to analysis to further data collection and so on (Somekh, 2006).
Another aspect related to data analysis that I would like to recommend to other teacher researchers is to take into account from the beginning, that once there has been some overall examination of the data, it is absolutely important to develop categories or codes to identify the broad trends that have emerged from making some kind of sense of the data collected more specifically (Cohen, 2005). I took too long to start coding or attempting to reduce the large amount of data that I had collected with the data collection instruments I used, such as tests, surveys, portfolios and field notes, to more manageable categories of concepts, themes or types which would have made it easier for me to later compare the data and build interpretations. My recommendation for other researchers is to assemble all the data that can illuminate the research question, skim the data considering any and all categories for sorting, and creating their categories whenever they see repetition or a pattern emerges, giving a name to each category until they complete a list of them.
The idea that data collection, action and analysis are interrelated and recycle into each other when doing action research summarizes my recommendations for those teacher researchers who are willing to carry out the second cycle of this action research project. It is difficult as well as unnecessary to separate the process of data collection and analysis in an action research project like the one I already developed.
Pedagogical implications
The implementation of an inquiry-based learning unit full of inquiry activities related to the systems of the human body will give students the opportunity to ask more questions, to discover scientific knowledge themselves, and to communicate more with other peers and the teacher, thus increasing their autonomy awareness (Sheerin, 1997) as well as developing their thinking skills while learning science in their second language within a student-centered classroom atmosphere.
My intention with this action research project is to contribute to the field of teaching and learning science in English, since this study will shed light about important issues related to how the level of autonomy awareness can be increased in a group of fourth grade students by means of applying an inquiry-based learning approach to science rather than a traditional teacher-centered methodology.
This study is relevant for the students, because it will help them improve in terms of learner autonomy. Learning to be autonomous is one of the most important objectives students must accomplish nowadays because the development of this skill makes them able to make decisions in an independent way after analyzing many possibilities, and because it is very helpful for students to be successful in any project or task they have to face in their daily lives (Luke, 2006).
This action research project is also pertinent for the educational institution for which I work, because it will lead teachers of the science department to reflect on the importance of including inquiry-based science activities in the units of the current science program to help students become more autonomous while developing critical thinking skills.
Students who use inquiry to learn science engage in many of the same activities and thinking processes as scientists who are seeking to expand human knowledge of the natural world. The activities and thinking processes used by scientists will become more familiar to the educators seeking to introduce inquiry into their science classrooms. Both students and teachers will be able to use inquiry to learn how to do science, learn about the nature of science, and learn science content (Olson, 2000).
No hay comentarios:
Publicar un comentario